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1. Introduction 

In recent years there has been a considerable interest in the general propert ies of 
subdomains of a quantum mechanical system (molecular fragments,  unit cells in 
crystals) [1-5]. The principal aim of such a work is an understanding of the 
propert ies of the total system in terms of the propert ies of its parts. Of particular 
interest in this context is the question to what extent the particle density of a 
sudomain determines the physical properties of the subdomain,  or even of the 
whole domain of the system. 

There  is an important  theorem by Hohenberg  and Kohn [6] saying that (under 
certain restrictions) the ground state wave function and energy of a quantum 
mechanical system are unique functionals of the spin-averaged particle density. In 
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the case of a one-particle system it was further shown [4] that this theorem holds 
also for virial fragments, which are specially defined subdomains of the physical 
space of the system. In this context it has been conjectured [2, 3] that a similar 
theorem could also be true for the virial fragments of a many particle system. 

In the present article we are able to show that the theorem of Hohenberg and 
Kohn does hold for subdomains of a bounded (or periodic) many particle system. 
More precisely: we will show, that the ground state particle density of an arbitrary 
subdomain of a quantum system enclosed in a bounded domain uniquely deter- 
mines the wave function, the energy and more generally, the expectation value of 
any spin-free observable associated with that particular subdomain, or with any 
other subdomain or with the total domain of the system. 

Our proof is based on certain regularity conditions for the potentials appearing in 
the Hamiltonian, and on a rigorous analysis of the proof of the original theorem of 
Hohenberg  and Kohn, which will show that these regularity conditions are in fact 
also necessary for the proof given by Hohenberg  and Kohn (i.e. for the case, where 
the whole domain of the system is considered). 

2. Analysis of the Proof of the Theorem of Hohenberg and Kohn 

For the proof of this theorem (which is valid also for an infinitely extended 
quantum system) we have to make the following general mathematical assump- 
tions, which are from the physical point of view not very restrictive: 

(a) For concreteness we are dealing with an N-electron system. Generalisations 
to arbitrary Fermion or Boson systems are entirely trivial. All wave functions 
considered in this note are therefore elements of the subspace of all antisymmetric 
functions of the complex Hilbert space L2(G)  | f l  | f2 �9 " �9 | fN. G denotes the 
N-fold direct sum of an arbitrary bounded or unbounded simply connected region 
g in R 3 , f i  the spin space of the ith electron. The Hamiltonian has to be totally 
symmetric with regard to particle permutations and may contain spin operators. 
(b) The Hamiltonian H of the system has to be self-adj0int, bounded from below, 
and below a certain point the spectrum of the Hamiltonian H has to be discrete. 
Furthermore,  the Hamiltonian has to be elliptic with coefficients analytic every- 
where except on a set of measure zero with connected complement Go in G. It is 
well known [7, 8] that the usual, non-relativistic and spin-free Born-Oppen-  
heimer Hamiltonian (involving Coulomb singularities) fulfils these conditions. 
(c) Except for permissible degeneracy due to time-inversion invariance (e.g. the 
Kramers degeneracy in the case of an odd number of electrons) the ground state of 
the Hamiltonian has to be non-degenerate.  
(d) We write the Hamiltonian H in the form H = K + V, where V is a sum of real 
and local one-electron potentials, 

N 

V(r l  . . . . .  r~) = E v(r~). 
n=l  
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Remark .  These assumptions warrant the validity of the following prerequisites 
actually used for the proof of the theorem of Hohenberg  and Kohn: there exists a 
non-degenerate ground state; this ground state is uniquely determined by the 
variational principle and does not vanish except on a set of measure zero. 

We shall give the proof for the case of a non-degenerate ground state only. If there 
is a degeneracy e.g. due to time-inversion symmetry the proof applies to a 
symmetry adapted subspace of the Hilbert space. The final result remains 
unchanged because the potential and the charge density are invariant under 
time-inversion. 

Notation. We consider two Hamiltonians H~ = K + Vx and H2 = K + V2 with the 
corresponding normalized ground-state wave functions ~b~, &2, and eigenvalues 
E~, E2. The ith particle coordinate xi = (ri, st) stands for the position vector rg and 
the spin variable si. 

Lemma 1. &l=O~l#2 if and only if V1 = V2+/3 (a and /3 are constants, la]= 
1, a ~ C , / 3 s R ) .  

Proof. (a) If &a = o~(D2 = (/~, then Hi& = E l &  and Hz& = S2d~, hence by subtrac- 
tion (V1-V2)& = ( E 1 - E 2 ) O .  By assumption the Hamiltonian is elliptic with 
analytic coefficients in Go, hence (compare e.g. Ref. [9]) & is analytic in Go. From 
this analyticity follows (compare e.g. Ref. [10]) that & # 0 in Go except on a set of 
measure zero. Hence V1 - V2 = E1 - E 2  except on a set of measure zero. 
(b) If V1 = V; +/3, then the Hamiltonians H1 and H2 = H 1 - / 3  have the same 
eigenspaces. By assumption 01 and (~2 belong to the non-degenerate lowest 
eigenvalue (of//1,/-/2 respectively), hence dq and (~2 span the same 1-dimensional 
eigenspace. 

We define the spin-averaged particle-density by 

nk(r )= N ~ " " " ~ g d3r2 " " " Igd3rNt&k(rsl' r2s2 . . . . .  rNSN)[2' k = I '  2 

Lemma 2. nl(r)  # n2(r) if and only if v l ( r )  # v2(r) + consb. 

Proof. (a) If U 1 • v2+const.,  then according to Lemma 1 (~1 • Og•2. Our general 
assumptions on the structure of the Hamiltonian warrant the validity of the 
variational principle, hence 

E 1  = (~a]HII~)  < (~21H~102) = E2 + (&2] V~ - V21&2), 

o r  

E1 < E2 + fg d 3 r [ v l ( r ) -  v2(r)]n2(r). 
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The strict inequality sign is important  and due to the fact that E1 is non- 
degenerate.  In the same way we find 

E2 <El + Ig dar[vE(r)- vl(r)]nl(r), 

hence by addition: 

0 < Ig d3r[vl(r) - v2(r)][n2(r)- nl(r)]. 

n2 = n~ would imply 0 < 0 ,  hence nl ~ n2. 
(b) Conversely nl ~ n2 implies thl ~ ath2 (because evidently thl = ath2 implies 
na = n2). Hence according to L e m m a  1 v~ -- v2 + const. 

From L e m m a  2 it immediately follows that the energy and the ground state wave 
function (and hence all expectation values of spin-free observables) are unique 
functionals of the particle density n(r) ( theorem of Hohenberg  and Kohn). 
(According to L e m m a  2 equal particle densities nl(r), n2(r) imply equal potentials 
v~(r), t~2(r) (up to a constant fl), i.e. equal Hamiltonians /-/1, /-/2 (up to the constant 
/3), and hence equal ground state energies El ,  E2 (if fl = 0, i.e. if the origin of the 
energy is the same in both cases). Further,  f rom a combination of L e m m a  1 and 
L e m m a  2 one obtains nl(r) = n2(r) if and only if thl = ath2). 

It is important  to remark  that the conditions of analyticity and connectedness used 
to prove Lemma  1 are essential to exclude the case, where thl, thE are equal to zero 
on a subdomain D, which is not of measure zero, but are different f rom zero 
elsewhere. In such a case we could not exclude the situation, where v ~ - v 2  is 
different f rom E ~ - E 2  on D (and hence on Go). 

In the case of a one-electron system L e m m a  1 alone leads to the theorem of 
Hohenberg  and Kohn, since th has no nodes and therefore it is uniquely (up to a 
phase factor) determined by n (r). 

For practical purposes the usefulness of the theorem of Hohenberg  and Kohn is 
restricted by the fact, that the unique functionals of the density n (r) are unknown 
in general, and further, because not any reasonable looking function is a possible 
particle density n (r) of a quantum mechanical system. Hence,  for a formulation of 
a variational principle or for the definition of a functional derivative 8/6n (r) we 
have to impose subsidiary conditions. For example,  the particle density has to be 
N-representable .  For Bosons there is no restriction, but for Fermions n (r) must be 
derivable f rom a 1-density operator  that is an element  of the so-called Thomas 
space (compare Coleman [11]). 

3. The Case of a Subdomain 

We consider now a subdomain O of the physical three-dimensional  domain g of 
the system. Let  nla(r),  n2a(r) be the restrictions of nl(r), n2(r) to O. We first 
prove, that n m  = n2a implies nl = n2. This last s tatement  is true, if we can show, 
that nl(r), n2(r) are analytic in g almost everywhere.  
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To sketch this proof we remark that, since 05(r~sl, r2, s2 . . . . .  rNSN) is analytic in G 
except on the set S of singular points, this is also true for 

n(rl, r2 . . . . .  rN) = X Y'. . . . ~, ld)(rlsl, ras2 . . . . .  rNsN)l 2. 
s i s l g  

We further recall that n (rx, r2 . . . . .  rN) is an integrable function in G c R 3N, hence 
it is integrable on the subspace of N -  1 variables ri. 

We now consider the typical case of a Born-Oppenheimer  Hamiltonian with 
Coulomb interactions between the particles. Here  the set S of singular points is 
the union of sets Mij defined by ri = rj, i, j = 1, 2 . . . . .  N, i ~ j (due to the Coulomb 
singularities of the electron-electron interactions) and sets M~ defined by ri = 
R~, i = 1, 2 . . . . .  N (from the Coulomb singularities of the interaction between 
the electrons and the nuclei at their fixed positions R~, c~ = 1, 2 . . . .  , f ) .  There-  
fore, for any fixed value r~, the set S is of measure zero in the ( 3 N -  3)-dimensional 
subspace of the remaining N - 1 variables and therefore does not cut this subspace 
into two disjoint parts with non-analytic common boundary. (These properties 
follow also directly from the assumptions made in Sect. 2). 

We now make the additional assumption, that the physical region g of the system 
is an arbitrary large but bounded three-dimensional domain. Since an analytic 
function, integrated over a finite domain of a subset of its variables, gives an 
analytic function of the remaining variables, it follows (together with the proper-  
ties of n (r~, r2 . . . . .  rN) discussed before) that 

n(r) = N f  n(r, r2, r3, . . . ,  rN) d3r2 d3r3 �9 d3rN o Q 

is analytic in g except on the singular points R~. 

Thus n (r) is a unique functional of nn. From this result it follows together with the 
theorem of Hohenberg  and Kohn, that also the ground state energy E, the ground 
state wave function q~(x~, x2 . . . . .  xN) and therefore the restriction of ~b to any 
3N-dimensional subset of G are unique functionals of ha(r). Hence all expec- 
tation values of spin-free operators defined by d~ or by means of such restrictions 
of ~b are unique functionals of ha(r). 

As an example consider the energy Ea, of a subdomain f~' _c g (Ft' may or may not 
coincide with the original subdomain It). We write the spin-free Hamiltonian of 
the system in the form 

N N 

H = Z H(~(r~)+ 2 H(2~(r~, rj), 
i = l  i < j  

1 

where H(l~(rl) and H(2~(ri, ri) are one- and two-particle operators respectively. 
The energy Ea, may be defined as (cf. Ref. [2-4]) 

En' = fn' [H(l~(r'l )F(l~(rl' r~ )]r~ ~ d3rl 

+ fa, d3rl fgS(2)(rl,  r2)F(2)(rl, r2; rl, r2) d3r2. 
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From the definitions of F (1) and F (2), the one- and two-particle density matrices, it 
is immediately clear, that both integrals in Eq. (1) can be expressed by means of 
the following restrictions of ~b 

~l)'(X 1, X2 . . . . .  Xi . . . . . .  XN)  

= qg(rl, s l ;  r2, s2 . . . .  , ri, si . . . .  , rN, SN)]r~n',rk~g,k~i. 

Therefore En, is a unique functional of nn(r). This is of course also true for each of 
the different energy terms (kinetic, electron-electron repulsive . . . .  ) contained in 
EIT. 

4. Summary 

In this article we have shown, that the ground state particle density nn(r) of an 
arbitrary subdomain f~ of a quantum system which is contained in a finite domain 
g c R 3 uniquely determines all the (spin-free) ground state properties in fl, in any 
other subdomain ~' ,  and in the total domain g of the system (provided f~, l)' and g 
are of the same dimension). 
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